Lernvideo
Bedingte Wahrscheinlichkeit
Unterscheide sorgfältig zwischen
  • P(A ∩ B)
    = Wahrscheinlichkeit, dass A und B eintritt; im Baumdiagramm steht sie am Ende des A - B - bzw. B - A - Pfades.

  • PA(B)
    = Wahrscheinlichkeit von Ereignis B unter der Bedingung, dass auch A eintritt (eingetreten ist); im Baumdiagramm steht sie über dem Ast, der von A zu B führt.
    = P(A ∩ B) / P(A)

  • PB(A)
    = Wahrscheinlichkeit von Ereignis A unter der Bedingung, dass auch B eintritt (eingetreten ist); im Baumdiagramm steht sie über dem Ast, der von B zu A führt.
    = P(A ∩ B) / P(B)
Beispiel
Betrachte die Ereignisse B = "Person trägt Brille" und K = "Person ist kurzsichtig". Drücke mit Worten aus und markiere in einem Baumdiagramm:
P
 
B ∩ K
 
    
 
P
B
 
K
 
    
 
P
K
 
B

In der Vierfeldertafel können absolute Häufigkeiten (natürliche Zahlen) oder relative Häufigkeiten / Wahrscheinlichkeiten (Dezimalbrüche) gegenübergestellt werden.

Alle vier Felder ergeben in der Summe die Gesamtzahl der Stichproben (absolute Häufigkeiten) bzw. 1 (realive Häufigkeiten / Wahrscheinlichkeiten). Diese steht ganz unten rechts.

Neben den vier eigentlichen Feldern sind die Randfelder zu beachten. Hier handelt es sich um die Summen der jeweiligen Zeilen bzw. Spalten.

Beispiel
Ergänze die Vierfeldertafel:
A
A
B
4
13
B
25
150
 
         (absolute Häufigkeiten)
In einem Baumdiagramm gelten folgende Pfadregeln:
  1. Die Wahrscheinlichkeit eines Pfads ergibt sich durch Multiplikation der Ast-Wahrscheinlichkeiten entlang des Pfads (Produktregel).
  2. Die Wahrscheinlichkeit eines Ereignisses ergibt sich durch Addition der Wahrscheinlichkeiten aller Pfade, die zu dem Ereignis führen (Summenregel).
  3. Die Wahrscheinlichkeiten aller Äste, die von einem Verzweigungspunkt ausgehen, ergeben in der Summe 1 (Verzweigungsregel).
Ermittle im Baumdiagramm:

P(A) =

  • Wahrscheinlichkeit über dem Ast, der vom Startpunkt zum Ereignis A führt oder
  • Summe der Wahrscheinlickeiten aller Pfade, die zu A führen (Verzweigungsregel)
P(A ∩ B) =
  • Wahrscheinlichkeit des Pfades, der über A und B bzw. über B und A führt; gemeint ist also die Wahrscheinlichkeit, dass sowohl A als auch B eintritt.
PA(B) (bedingte Wahrscheinlichkeit) =
  • Wahrscheinlichkeit über dem Ast, der von A zu B führt; gemeint ist also die Wahrscheinlichkeit von Ereignis B unter der Bedingung, dass auch A eintritt (eingetreten ist).
Ermittle in der Vierfeldertafel:

P(A ∩ B) =

  • Wahrscheinlichkeit in der Zelle, in der sich A- und B-Streifen überschneiden
P(A) =
  • Wahrscheinlichkeit am Rand des A-Streifens oder
  • Summe der Wahrscheinlickeiten von P(A ∩ B) und P(A ∩ B)
PA(B) (bedingte Wahrscheinlichkeit) =
  • P(A ∩ B) / P(A); die bedingte Wahrscheinlichkeit kann also in der Vierfeldertafel nicht direkt abgelesen, aber leicht berechnet werden.

Beispiel
Bestimme die gefragten Wahrscheinlichkeiten:
A
A
B
4
13
17
B
25
108
133
29
121
150
P
 
A ∩
 
B
=
?
;
P
 
A
=
?
;
P
B
 
A
=
?
Beispiel
Von den 36 Frauen, die ohne Begleitung zu einer Single-Party kommen, sind fünf in Wirklichkeit schon in festen Händen. Jede sechste Frau auf der Party sieht nach Jans Meinung "toll" aus. Was er nicht weiß: Nur zwei von den "Tollen" sind noch zu haben. Bei einem Spiel wird Jan mit einer zufällig ausgewählten Frau bekannt gemacht. Wie groß ist die Wahrscheinlichkeit, dass
  • eine tolle Frau noch zu haben ist? (= p1)
  • Jan die Frau toll findet? (= p2)
  • Jan die Frau toll findet, wenn sie schon vergeben ist? (= p3)
  • Jan die Frau nicht toll findet, sie aber noch zu haben ist? (= p4)
Mathe üben

Jetzt online üben und selber rechnen!

24 Mathe-Aufgaben zum Theme "Stochastik - bedingte Wahrscheinlichkeit"
Aufgaben rechnen